The Solar Extreme Ultraviolet Monitor for MAVEN

نویسنده

  • F. G. Eparvier
چکیده

The Extreme Ultraviolet (EUV) monitor is an instrument on the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, designed to measure the variability of the solar soft x-rays and EUV irradiance at Mars. The solar output in this wavelength range is a primary energy input to the Mars atmosphere and a driver for the processes leading to atmospheric escape. The MAVEN EUV monitor consists of three broadband radiometers. The radiometers consist of silicon photodiodes with different bandpass-limiting filters for each channel. The filters for the radiometers are: Channel A: thin foil C/Al/Nb/C for 0.1–3 nm and 17–22 nm, Channel B: thin foil C/Al/Ti/C for 0.1–7 nm, and Channel C: interference filter for 121–122 nm. A fourth, covered photodiode is used to monitor variations in dark signal due to temperature and radiation background changes. The three science channels will monitor emissions from the highly variable corona and transition region of the solar atmosphere. The EUV monitor is mounted on the top deck of the MAVEN spacecraft and is pointed at the Sun for most of its orbit around Mars. The measurement cadence is 1-second. The broadband irradiances can be used to monitor the most rapid changes in solar irradiance due to flares. In combination with time-interpolated observations at Earth of slower varying solar spectral emissions, the broadband MAVEN EUV monitor measurements will also be used in a spectral irradiance model to generate the full EUV spectrum at Mars from 0 to 190 nm in 1-nm bins on a time cadence of 1-minute and daily averages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of the Martian cold oxygen corona from the O I 130.4 nm by IUVS/MAVEN

First observations of the O I 130.4nm resonant line performed by the Imaging Ultraviolet Spectrograph (IUVS) aboard the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) are presented in this paper. This emission line is observed during the different orbit phases of MAVEN. The atomic oxygen density and the temperature at 200 km are retrieved from an automatic pipeline using a radiative tra...

متن کامل

The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations

We report a comprehensive study of Mars dayglow observations focusing on upper atmospheric structure and seasonal variability. We analyzed 744 vertical brightness profiles comprised of ∼109,300 spectra obtained with the Imaging Ultraviolet Spectrograph (IUVS) aboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) satellite. The dayglow emission spectra show features similar to previous UV me...

متن کامل

Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN

Two of the primary goals of the MAVEN mission are to determine how the rate of escape of Martian atmospheric gas to space at the current epoch depends upon solar influences and planetary parameters and to estimate the total mass of atmosphere lost to space over the history of the planet. Along with MAVEN’s suite of nine science instruments, a collection of complementary models of the neutral an...

متن کامل

Correction of SOHO CELIAS/SEM EUV Measurements Saturated by Extreme Solar Flare Events

The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 s cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1 – 50.0 nm) by the flare soft X-ray and EUV flux. The first order EUV channel (26 – 34 nm) is not saturated by the flare flu...

متن کامل

Solar ultraviolet-B radiation monitoring in Khorram Abad city in Iran

Background: The increasing evidences show that global depletion of stratospheric ozone layer is caused by pollutant and growing incidence of the skin cancer and cataract is related to the amounts of solar UV radiation reaching the earth ׳s surface. Therefore, the main driving force behind such efforts has been the lack of an appropriate network in scope monitoring of the terrestrial UV...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015